Меню
Бесплатно
Главная  /  Отношения  /  0 относится к целым числам. Наименьшее общее кратное и наибольший общий делитель

0 относится к целым числам. Наименьшее общее кратное и наибольший общий делитель

1) Делю сразу на, так как оба числа 100% делятся на:

2) Разделю на оставшиеся большие числа (и), так как и без остатка делятся на (при этом, раскладывать не буду - он и так общий делитель):

6 2 4 0 = 1 0 ⋅ 4 ⋅ 1 5 6

6 8 0 0 = 1 0 ⋅ 4 ⋅ 1 7 0

3) Оставлю и в покое и начну рассматривать числа и. Оба числа точно делятся на (заканчиваются на четные цифры (в таком случае представляем как, а можно разделить на)):

4) Работаем с числами и. Есть ли у них общие делители? Так легко, как в предыдущих действиях, и не скажешь, поэтому дальше просто разложим их на простые множители:

5) Как мы видим, мы были правы: у и общих делителей нет, и теперь нам нужно перемножить.
НОД

Задача №2. Найти НОД чисел 345 и 324

Здесь не могу быстро найти хоть один общий делитель, так что просто раскладываю на простые множители (как можно меньше):

Точно, НОД, а я изначально не проверила признак делимости на, и, возможно, не пришлось бы делать столько действий.

Но ты-то проверил, верно?

Как видишь, это совсем несложно.

Наименьшее общее кратное (НОК) - экономит время, помогает решить задачи нестандартно

Допустим, у тебя есть два числа - и. Какое существует самое маленькое число, которое делится и без остатка (то есть нацело)? Сложно представить? Вот тебе визуальная подсказка:

Ты же помнишь, что обозначается буквой? Правильно, как раз целые числа. Так какое наименьшее число подходит на место х? :

В данном случае.

Из этого простого примера вытекает несколько правил.

Правила быстрого нахождения НОК

Правило 1. Если одно из двух натуральных чисел делится на другое число, то большее из этих двух чисел является их наименьшим общим кратным.

Найди у следующих чисел:

  • НОК (7;21)
  • НОК (6;12)
  • НОК (5;15)
  • НОК (3;33)

Конечно, ты без труда справился с этой задачей и у тебя получились ответы - , и.

Заметь, в правиле мы говорим о ДВУХ числах, если чисел будет больше, то правило не работает.

Например, НОК (7;14;21) не равно 21, так как не делится без остатка на.

Правило 2. Если два (или более двух) числа являются взаимно простыми, то наименьшее общее кратное равно их произведению.

Найди НОК у следующих чисел:

  • НОК (1;3;7)
  • НОК (3;7;11)
  • НОК (2;3;7)
  • НОК (3;5;2)

Посчитал? Вот ответы - , ; .

Как ты понимаешь, не всегда можно так легко взять и подобрать этот самый х, поэтому для чуть более сложных чисел существует следующий алгоритм:

Потренируемся?

Найдем наименьшее общее кратное - НОК (345; 234)

Раскладываем каждое число:

Почему я сразу написал?

Вспомни признаки делимости на: делится на (последняя цифра - четная) и сумма цифр делится на.

Соответственно, можем сразу разделить на, записав ее как.

Теперь выписываем в строчку наиболее длинное разложение - второе:

Добавим к нему числа из первого разложения, которых нет в том, что мы выписали:

Заметь: мы выписали все кроме, так как она у нас уже есть.

Теперь нам необходимо все эти числа перемножить!

Найди наименьшее общее кратное (НОК) самостоятельно

Какие ответы у тебя получились?

Вот, что вышло у меня:

Сколько времени ты потратил на нахождение НОК ? Мое время - 2 минуты, правда я знаю одну хитрость , которую предлагаю тебе открыть прямо сейчас!

Если ты очень внимателен, то ты наверное заметил, что по заданным числам мы уже искали НОД и разложение на множители этих чисел ты мог взять из того примера, тем самым упростив себе задачу, но это далеко не все.

Посмотри на картинку, возможно к тебе придут еще какие-нибудь мысли:

Ну что? Сделаю подсказку: попробуй перемножить НОК и НОД между собой и запиши все множители, которые будут при перемножении. Справился? У тебя должна получиться вот такая цепочка:

Присмотрись к ней повнимательней: сравни множители с тем, как раскладываются и.

Какой вывод ты можешь сделать из этого? Правильно! Если мы перемножим значения НОК и НОД между собой, то мы получим произведение этих чисел.

Соответственно, имея числа и значение НОД (или НОК ), мы можем найти НОК (или НОД ) по такой схеме:

1. Находим произведение чисел:

2. Делим получившееся произведение на наш НОД (6240; 6800) = 80:

Вот и все.

Запишем правило в общем виде:

Попробуй найти НОД , если известно, что:

Справился? .

Отрицательные числа - «лжечисла» и их признание человечеством.

Как ты уже понял, это числа, противоположные натуральным, то есть:

Казалось бы, что в них такого особенного?

А дело в том, что отрицательные числа «отвоевывали» себе законное место в математике аж до XIX века (до этого момента было огромное количество споров, существуют они или нет).

Само отрицательное число возникло из-за такой операции с натуральными числами, как «вычитание».

Действительно, из вычесть - вот и получается отрицательное число. Именно поэтому, множество отрицательных чисел часто называют «расширением множества натуральных чисел».

Отрицательные числа долго не признавались людьми.

Так, Древний Египет, Вавилон и Древняя Греция - светочи своего времени, не признавали отрицательных чисел, а в случае получения отрицательных корней в уравнении (например, как у нас), корни отвергались как невозможные.

Впервые отрицательные числа получили свое право на существование в Китае, а затем в VII веке в Индии.

Как ты думаешь, с чем связано это признание?

Правильно, отрицательными числами стали обозначать долги (иначе - недостачу).

Считалось, что отрицательные числа - это временное значение, которое в результате изменится на положительное (то есть, деньги кредитору все же вернут). Однако, индийский математик Брахмагупта уже тогда рассматривал отрицательные числа наравне с положительными.

В Европе к полезности отрицательных чисел, а также к тому, что они могут обозначать долги, пришли значительно позже, эдак, на тысячелетие.

Первое упоминание замечено в 1202 году в «Книге абака» Леонарда Пизанского (сразу говорю - к Пизанской башне автор книги отношения никакого не имеет, а вот числа Фибоначчи - это его рук дело (прозвище Леонардо Пизанского - Фибоначчи)).

Так, в XVII веке Паскаль считал что.

Как думаешь, чем он это обосновывал?

Верно, «ничто не может быть меньше НИЧЕГО».

Отголоском тех времен остается тот факт, что отрицательное число и операция вычитания обозначается одним и тем же символом - минусом «-». И правда: . Число « » положительное, которое вычитается из, или отрицательное, которое суммируется к?... Что-то из серии «что первое: курица или яйцо?» Вот такая вот, своеобразная эта математическая философия.

Отрицательные числа закрепили свое право на существование с появлением аналитической геометрии, иначе говоря, когда математики ввели такое понятие как числовая ось.

Именно с этого момента наступило равноправие. Однако все равно вопросов было больше чем ответов, например:

пропорция

Данная пропорция носит название «парадокс Арно». Подумай, что в ней сомнительного?

Давай рассуждать вместе « » больше, чем « » верно? Таким образом, согласно логике, левая часть пропорции должна быть больше, чем правая, но они равны… Вот он и парадокс.

В итоге, математики договорились до того, что Карл Гаусс (да, да, это тот самый, который считал сумму (или) чисел) в 1831 году поставил точку.

Он сказал, что отрицательные числа имеют те же права, что и положительные, а то, что они применимы не ко всем вещам, ничего не означает, так как дроби так же не применимы ко многим вещам (не бывает так, что яму роют землекопа, нельзя купить билета в кино и т.д.).

Успокоились математики только в XIX веке, когда Уильямом Гамильтоном и Германом Грассманом была создана теория отрицательных чисел.

Вот такие они спорные, эти отрицательные числа.

Возникновение «пустоты», или биография нуля.

В математике - особенное число.

С первого взгляда, это ничто: прибавить, отнять - ничего не изменится, но стоит только приписать его справа к « », и полученное число будет в раз больше изначального.

Умножением на ноль мы все превращаем в ничто, а разделить на «ничто», то есть, мы не можем. Одним словом, волшебное число)

История нуля длинная и запутанная.

След нуля найден в сочинениях китайцев во 2 тыс. н.э. и ещё раньше у майя. Первое использование символа нуля, каковым он является в наши дни, было замечено у греческих астрономов.

Существует множество версий, почему было выбрано именно такое обозначение «ничего».

Некоторые историки склоняются к тому, что это омикрон, т.е. первая буква греческого слова ничто - ouden. Согласно другой версии, жизнь символу ноля дало слово «обол» (монета, почти не имеющая ценности).

Ноль (или нуль) как математический символ впервые появляется у индийцев (заметь, там же стали «развиваться» отрицательные числа).

Первые достоверные свидетельства о записи нуля относятся к 876 г., и в них « » - составляющая числа.

В Европу ноль также пришел с запозданием - лишь в 1600г., и также как и отрицательные числа, сталкивался с сопротивлением (что поделаешь, такие они, европейцы).

«Нуль часто ненавидели, издавна боялись, а то и запрещали» — пишет американский математик Чарльз Сейф.

Так, турецкий султан Абдул-Хамид II в конце XIXв. приказал своим цензорам вычеркнуть из всех учебников химии формулу воды H2O, принимая букву «О» за нуль и не желая, чтобы его инициалы порочились соседством с презренным нулём».

На просторах интернета можно встретить фразу: «Ноль - самая могущественная сила во Вселенной, он может всё! Ноль создаёт порядок в математике, и он же вносит в неё хаос». Абсолютно верно подмечено:)

Краткое изложение раздела и основные формулы

Множество целых чисел состоит из 3 частей:

  • натуральные числа (рассмотрим их подробнее чуть ниже);
  • числа, противоположные натуральным;
  • ноль - " "

Множество целых чисел обозначается буквой Z.

1. Натуральные числа

Натуральные числа - это числа, которые мы употребляем для счета предметов.

Множество натуральных чисел обозначается буквой N.

В операциях с целыми числами понадобится умение находить НОД и НОК.

Наибольший общий делитель (НОД)

Чтобы найти НОД необходимо:

  1. Разложить числа на простые множители (на такие числа, которые нельзя разделить ни на что больше, кроме самого себя или на, например, и т.д.).
  2. Выписать множители, которые входят в состав обоих чисел.
  3. Перемножить их.

Наименьшее общее кратное (НОК)

Чтобы найти НОК необходимо:

  1. Разложить числа на простые множители (это ты уже отлично умеешь делать).
  2. Выписать множители входящие в разложение одного из чисел (лучше брать самую длинную цепочку).
  3. Добавить к ним недостающие множители из разложений остальных чисел.
  4. Найти произведение получившихся множителей.

2. Отрицательные числа

это числа, противоположные натуральным, то есть:

Теперь я хочу слышать тебя...

Надюсь ты оценил супер-полезные "трюки" этого раздела и понял как они помогут тебе на экзамене.

И что более важно - в жизни. Я об этом не говорю, но, поверь, этот так. Умение быстро и без ошибок считать спасает во многих жизненных ситуациях.

Теперь твой ход!

Напиши, будешь ли ты применять методы группировки, признаки делимости, НОД и НОК в расчетах?

Может быть ты применял их ранее? Где и как?

Возможно у тебя есть вопросы. Или предложения.

Напиши в комментариях как тебе статья.

И удачи на экзаменах!

Впервые отрицательные числа стали использовать в древнем Китае и в Индии, в Европе их ввели в математический обиход Николя Шюке (1484 год) и Михаэль Штифель (1544).

Алгебраические свойства

\mathbb{Z} не замкнуто относительно деления двух целых чисел (например, 1/2). Следующая таблица иллюстрирует несколько основных свойств сложения и умножения для любых целых a , b и c .

сложение умножение
замкнутость : a + b - целое a × b - целое
ассоциативность : a + (b + c ) = (a + b ) + c a × (b × c ) = (a × b ) × c
коммутативность : a + b = b + a a × b = b × a
существование нейтрального элемента : a + 0 = a a × 1 = a
существование противоположного элемента : a + (−a ) = 0 a ≠ ±1 ⇒ 1/a не является целым
дистрибутивность умножения относительно сложения: a × (b + c ) = (a × b ) + (a × c )
|заголовок3= Инструменты расширения
числовых систем |заголовок4= Иерархия чисел |список4=
-1,\;0,\;1,\;\ldots Целые числа
-1,\;1,\;\frac{1}{2},\;\;0{,}12,\frac{2}{3},\;\ldots Рациональные числа
-1,\;1,\;\;0{,}12,\frac{1}{2},\;\pi,\;\sqrt{2},\;\ldots Вещественные числа
-1,\;\frac{1}{2},\;0{,}12,\;\pi,\;3i+2,\;e^{i\pi/3},\;\ldots Комплексные числа
1,\;i,\;j,\;k,\;2i + \pi j-\frac{1}{2}k,\;\dots Кватернионы 1,\;i,\;j,\;k,\;l,\;m,\;n,\;o,\;2 - 5l + \frac{\pi}{3}m,\;\dots Октонионы 1,\;e_1,\;e_2,\;\dots,\;e_{15},\;7e_2 + \frac{2}{5}e_7 - \frac{1}{3}e_{15},\;\dots Седенионы
|заголовок5= Другие
числовые системы

|список5=Кардинальные числа – Непременно надо перенести на кровать, здесь никак нельзя будет…
Больного так обступили доктора, княжны и слуги, что Пьер уже не видал той красно желтой головы с седою гривой, которая, несмотря на то, что он видел и другие лица, ни на мгновение не выходила у него из вида во всё время службы. Пьер догадался по осторожному движению людей, обступивших кресло, что умирающего поднимали и переносили.
– За мою руку держись, уронишь так, – послышался ему испуганный шопот одного из слуг, – снизу… еще один, – говорили голоса, и тяжелые дыхания и переступанья ногами людей стали торопливее, как будто тяжесть, которую они несли, была сверх сил их.
Несущие, в числе которых была и Анна Михайловна, поровнялись с молодым человеком, и ему на мгновение из за спин и затылков людей показалась высокая, жирная, открытая грудь, тучные плечи больного, приподнятые кверху людьми, державшими его под мышки, и седая курчавая, львиная голова. Голова эта, с необычайно широким лбом и скулами, красивым чувственным ртом и величественным холодным взглядом, была не обезображена близостью смерти. Она была такая же, какою знал ее Пьер назад тому три месяца, когда граф отпускал его в Петербург. Но голова эта беспомощно покачивалась от неровных шагов несущих, и холодный, безучастный взгляд не знал, на чем остановиться.
Прошло несколько минут суетни около высокой кровати; люди, несшие больного, разошлись. Анна Михайловна дотронулась до руки Пьера и сказала ему: «Venez». [Идите.] Пьер вместе с нею подошел к кровати, на которой, в праздничной позе, видимо, имевшей отношение к только что совершенному таинству, был положен больной. Он лежал, высоко опираясь головой на подушки. Руки его были симметрично выложены на зеленом шелковом одеяле ладонями вниз. Когда Пьер подошел, граф глядел прямо на него, но глядел тем взглядом, которого смысл и значение нельзя понять человеку. Или этот взгляд ровно ничего не говорил, как только то, что, покуда есть глаза, надо же глядеть куда нибудь, или он говорил слишком многое. Пьер остановился, не зная, что ему делать, и вопросительно оглянулся на свою руководительницу Анну Михайловну. Анна Михайловна сделала ему торопливый жест глазами, указывая на руку больного и губами посылая ей воздушный поцелуй. Пьер, старательно вытягивая шею, чтоб не зацепить за одеяло, исполнил ее совет и приложился к ширококостной и мясистой руке. Ни рука, ни один мускул лица графа не дрогнули. Пьер опять вопросительно посмотрел на Анну Михайловну, спрашивая теперь, что ему делать. Анна Михайловна глазами указала ему на кресло, стоявшее подле кровати. Пьер покорно стал садиться на кресло, глазами продолжая спрашивать, то ли он сделал, что нужно. Анна Михайловна одобрительно кивнула головой. Пьер принял опять симметрично наивное положение египетской статуи, видимо, соболезнуя о том, что неуклюжее и толстое тело его занимало такое большое пространство, и употребляя все душевные силы, чтобы казаться как можно меньше. Он смотрел на графа. Граф смотрел на то место, где находилось лицо Пьера, в то время как он стоял. Анна Михайловна являла в своем положении сознание трогательной важности этой последней минуты свидания отца с сыном. Это продолжалось две минуты, которые показались Пьеру часом. Вдруг в крупных мускулах и морщинах лица графа появилось содрогание. Содрогание усиливалось, красивый рот покривился (тут только Пьер понял, до какой степени отец его был близок к смерти), из перекривленного рта послышался неясный хриплый звук. Анна Михайловна старательно смотрела в глаза больному и, стараясь угадать, чего было нужно ему, указывала то на Пьера, то на питье, то шопотом вопросительно называла князя Василия, то указывала на одеяло. Глаза и лицо больного выказывали нетерпение. Он сделал усилие, чтобы взглянуть на слугу, который безотходно стоял у изголовья постели.
– На другой бочок перевернуться хотят, – прошептал слуга и поднялся, чтобы переворотить лицом к стене тяжелое тело графа.
Пьер встал, чтобы помочь слуге.
В то время как графа переворачивали, одна рука его беспомощно завалилась назад, и он сделал напрасное усилие, чтобы перетащить ее. Заметил ли граф тот взгляд ужаса, с которым Пьер смотрел на эту безжизненную руку, или какая другая мысль промелькнула в его умирающей голове в эту минуту, но он посмотрел на непослушную руку, на выражение ужаса в лице Пьера, опять на руку, и на лице его явилась так не шедшая к его чертам слабая, страдальческая улыбка, выражавшая как бы насмешку над своим собственным бессилием. Неожиданно, при виде этой улыбки, Пьер почувствовал содрогание в груди, щипанье в носу, и слезы затуманили его зрение. Больного перевернули на бок к стене. Он вздохнул.
– Il est assoupi, [Он задремал,] – сказала Анна Михайловна, заметив приходившую на смену княжну. – Аllons. [Пойдем.]
Пьер вышел.

Существуют множество разновидностей чисел, одни из них – это целые числа. Целые числа появились для того, чтобы облегчить счет не только в положительную сторону, но и в отрицательную.

Рассмотрим пример:
Днем на улице была температура 3 градуса. К вечеру температура снизилась на 3 градуса.
3-3=0
На улице стало 0 градусов. А ночью температура снизилась на 4 градуса и стало показывать на термометре -4 градуса.
0-4=-4

Ряд целых чисел.

Натуральными числами мы такую задачу описать мы не сможем, рассмотрим эту задачу на координатной прямой.

У нас получился ряд чисел:
…, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, …

Этот ряд чисел называется рядом целых чисел .

Целые положительные числа. Целые отрицательные числа.

Ряд целых чисел состоит из положительных и отрицательных чисел. Справа от нуля идут натуральные числа или их еще называют целыми положительными числами . А слева от нуля идут целые отрицательные числа.

Нуль не является ни положительным ни отрицательным числом. Он является границей между положительными и отрицательными числами.

– это множество чисел, состоящие из натуральных чисел, целых отрицательных чисел и нуля.

Ряд целых чисел в положительную и в отрицательную сторону является бесконечным множеством.

Если мы возьмём два любых целых числа, то числа, стоящие между этими целыми числами, будут называться конечным множеством.

Например:
Возьмем целые числа от -2 до 4. Все числа, стоящие между этими числами, входят в конечное множество. Наше конечное множество чисел выглядит так:
-2, -1, 0, 1, 2, 3, 4.

Натуральные числа обозначаются латинской буквой N.
Целые числа обозначаются латинской буквой Z. Все множество натуральных чисел и целых чисел можно изобразить на рисунке.


Неположительные целые числа другими словами – это отрицательные целые числа.
Неотрицательные целые числа – это положительные целые числа.

Учитель высшей категории

Какие числа называются целыми?

Цели урока:

-Расширить понятие числа введением отрицательных чисел:

-Сформировать навык записи положительных и отрицательных чисел.

Задачи урока.

Образовательные – содействовать развитию умения обобщать и систематизировать, содействовать развитию математического кругозора, мышления и речи, внимания и памяти.

Воспитательные – воспитание установки на самообразование, самовоспитание, точную исполнительность, творческое отношение к деятельности, критичность мышления.

Развивающие – развивать у школьников умения сравнивать и обобщать, логически излагать мысли, развивать математический кругозор, мышление и речь, внимание и память .

Ход урока:

1. Вводная беседа.

До сих пор на уроках математики мы рассматривали какие числа?

-Натуральные и дробные.

Какие числа называются натуральными?

- Это числа используемые при счете предметов.

Сколько их можете сказать?

- бесконечно много.

Ноль является натуральным числом? Почему?

-Для чего нужны дробные числа?

-Мы не только считаем предметы, но части некоторых величин.

Какие дроби вы знаете?

- Обыкновенные и десятичные.

Задание № 1.

Среди чисел назовите натуральные? Обыкновенные дроби? Десятичные дроби?

10; 1,1; https://pandia.ru/text/77/504/images/image002_2.png" width="16" height="35 src=">; https://pandia.ru/text/77/504/images/image004_0.png" width="24" height="35 src=">.

2. Объяснение нового материала:

Однако в жизни вы уже наверняка встречались и с другими числами, какими? Где?

-Отрицательными. Например, в сводке погоды.

Перед тем, как перейти к изучению новой темы, давайте обсудим знаки, которые помогут в расширении множества чисел. Это знаки плюс и минус. Подумайте, с чем же в жизни ассоциируются эти знаки. Это может быть все, что угодно: белое - черное, хорошее – плохое. Ваши примеры мы запишем в виде таблицы.

Как много мыслей вызывают всего два знака. На самом деле эти два знака дают возможность идти в разные стороны. Такие числа, «похожие» на натуральные, но со знаком минус, нужны в тех случаях, когда величина может меняться в двух противоположных направлениях. Для выражения величины отрицательным числом вводят некоторую начальную, нулевую отметку. Посмотрим примеры, которые сделали другие, а дома подумаете и сделаем свою презентацию. Слайд № 2-7.

Использование знака очень удобно. Его использование принято во всем мире. Но так было не всегда. Слайд №8.

Итак, наряду с натуральными числами

1, 2, 3, 4, 5, …100, …, 1000, …

Мы будем рассматривать отрицательные числа, каждое из которых получается приписыванием к соответствующему натуральному числу знака минус:

-1,- 2, - 3, - 4, - 5, …-100, …,- 1000, …

Натуральное число и соответствующее ему отрицательное число называют противоположными. Например, числа15 и -15. Можно -15 и 15. О противоположен себе.

Правило: Натуральные числа, противоположные им отрицательные и число 0 называют целыми числами. Все эти числа вместе составляют множество целых чисел.

Откройте учебник стр 159, найдите правило, прочитайте еще раз, дома его учим наизусть.

Натуральное число принято называть также положительным целым, т е это одно и то же. Перед ним, для того чтобы подчеркнуть внешнее отличие от отрицательного, иногда ставится знак плюс. +5=5.

3. Формирование умений и навыков:

1) № 000.

2) Выпишите данные числа в две группы: положительные и отрицательные:

-15, 7, 28, -41, 0, 382, -591, -999, 2000.

3) Игра «мое настроение».

Сейчас выбудете оценивать свое настроение в настоящий момент по следующей шкале:

Хорошее настроение: +1, +2, +3, +4, +5.

Плохое настроение: -1, -2, -3, -4, -5.

Один человек будет писать результаты на доске, а все остальные будут вслух по очереди говорить: «У меня хорошее настроение на4балла»

4) Игра « хлопушка»

Я буду называть пары чисел, если пара является противоположной, то вы хлопаете в ладоши, если же нет, то в классе должна быть тишина:

5 и -5; 6 и 0,6; -300 и 300; 3 и 1/3; 8 и 80; 14 и -14; 5/7 и 7/5; -1 и 1.

5) Пропедевтика изучения сложения целых чисел:

№ 000 (а).

Решение смотрим с помощью презентации. Слайд №8.

4. Итоги урока:

-Какие числа называются положительными? Отрицательными?

-Что узнали про о?

- Для чего нужны отрицательные числа?

-Как записываются положительные и отрицательные числа?

5. Д/З: п. 8.1, № 000, 721(б), 715(б). Творческое задание: сочинить стих про целые числа, рисунок, презентацию, сказку.

Из цифры вычтем мы другую,
Ставим черточку прямую.
Этот знак мы узнаем,
"Минус" мы его зовем.
1.
Стоит единичка,
Похожа на спичку.
Она просто черточка
С маленькой челочкой.

2.
По воде скользит едва,
Словно лебедь, цифра два.
Шею выгнула дугой,
Гонит волны за собой.

3.
Два крючочка, посмотри,
Получилась цифра три.
Но на эти два крючка
Не насадишь червячка.

4.
Вилку как-то уронили,
Один зубчик отломили.
Вилка эта в целом мире
Называется "четыре".

5.
Цифра пять - с большим брюшком,
Носит кепку с козырьком.
В школе эту цифру пять
Дети любят получать.

6.
Что за вишенка, дружок,
Кверху загнут стебелек?
Ты ее попробуй съесть,
Эта вишня - цифра шесть.

7.
Я такую кочергу
Сунуть в печку не смогу.
Про нее известно всем,
Что она зовется "семь".

8.
Вилась веревочка, вилась,
В две петельки заплелась.
"Что за цифра?" - маму спросим.
Мама нам ответит: "Восемь".

9.
Ветер сильный дул и дул,
Вишенку перевернул.
Цифра шесть, скажи на милость,
В цифру девять превратилась.

10.
Словно старшая сестричка,
Ведет нолик единичка.
Только вместе пошагали,
Сразу цифрой десять стали.

Стихи о математике

Математика – основа и царица всех наук,
И тебе с ней подружиться я советую, мой друг.
Ее мудрые законы если будешь выполнять,
Свои знанья приумножишь,
Станешь ты их применять.
Сможешь по морю ты плавать,
Сможешь в космосе летать.
Дом построить людям сможешь:
Будет он сто лет стоять.
Не ленись, трудись, старайся,
Познавая соль наук
Все доказывать пытайся,
Но не покладая рук.
Станет пусть бином Ньютона
Для тебя, как друг родной,
Как в футболе Марадонна,
В алгебре он основной.
Синус, косинус и тангенс
Должен знать ты на зубок.
И конечно же котангенс,–
Это точно, мой дружок.
Если это все изучишь,
Если твердо будешь знать,
То, возможно, ты сумеешь
Звезды в небе сосчитать
Саушкина Яна, 8 класс
Люблю я математику,
Не так она сложна,
И нет там в ней грамматики,
И всем она нужна.
По алгебре проходим мы
Координаты, ось,
Куда идет прямая,
Прямо или вкось.
Сложение квадратов,
Деление корней,
И что получится при этом,
Узнаем только в ней.
Фигур найдешь симметрию,
Взяв в руки геометрию.

Аржникова Светлана,
8 класс

Сложная наука математика:
Нужно здесь делить и умножать.
Это не ИЗО и не грамматика,
Много надо тут запоминать.
Это не труды, не биология,
Формул много нужно применять.
Это не рассказ и не трилогия,
Можно здесь из чисел вычитать.
Это не английский и не музыка,
Умная наука, но трудна.
Сложная наука математика –
Пригодится в жизни нам она.

Разборов Роман,
8 класс

Скорость свою найти
И рассчитать пути
Сможет тебе помочь
Лишь математика.
Есть у меня тетрадь,
Только вот что скрывать:
Часто бывает лень
Что-то в нее вписать.
Даром преподаватели
Время со мною тратили,
Даром со мною мучались,
Время теряли зря.
Мудрых преподавателей
Слушал я невнимательно,
Если что было задано,
Не выполнял ведь я.
Сделать хотел квадрат,
Но был и сам не рад:
Стороны измерял,
В градусах записал.
Вместо сторон – углы,
А на углах круги.
Я б не хотел сейчас
Это решать опять.
Стал вырезать я круг,
Ромб получился вдруг,
Радиус не нашел,
Диагональ провел.
Ночью приснился сон:
Круг плачет, плачет он.
Плачет и говорит:
“Что с нами сделал ты?”

,
учитель математики

Раз, два, три, четыре, пять,
Встали цифры дружно в ряд.
Будем мы сейчас считать:
Складывать и умножать.
Дважды два равно четыре;
Дважды три, конечно, шесть.
Знает каждый во всем мире,
Сколько будет два плюс шесть.
А теперь сравнить мы можем,
Что же больше: два иль семь?
В этом правило поможет
Тот ответ найти нам всем.
С математикой мы будем
Крепко-накрепко дружить,
Никогда мы не забудем
Этой дружбой дорожить.

Витютнева Марина,

· Много из математики не остается в памяти, но когда поймешь ее, тогда легко при случае вспомнить забытое.

К целым числам относятся натуральные числа, ноль, а также числа, противоположные натуральным.

Натуральные числа — это положительные целые числа.

К примеру: 1, 3, 7, 19, 23 и т.д. Такие числа мы используем для подсчета (на столе лежит 5 яблок, у машины 4 колеса и др.)

Латинской буквой \mathbb{N} — обозначается множество натуральных чисел .

К натуральным числам нельзя отнести отрицательные (у стула не может быть отрицательное количество ножек) и дробные числа (Иван не мог продать 3,5 велосипеда).

Числами, противоположными натуральным, являются отрицательные целые числа: −8, −148, −981, … .

Арифметические действия с целыми числами

Что можно делать с целыми числами? Их можно перемножать, складывать и вычитать друг из друга. Разберем каждую операцию на конкретном примере.

Сложение целых чисел

Два целых числа с одинаковыми знаками складываются следующим образом: производится сложение модулей этих чисел и перед полученной суммой ставится итоговый знак:

(+11) + (+9) = +20

Вычитание целых чисел

Два целых числа с разными знаками складываются следующим образом: из модуля большего числа вычитается модуль меньшего и перед полученным ответом ставят знак большего по модулю числа:

(-7) + (+8) = +1

Умножение целых чисел

Чтобы умножить одно целое число на другое нужно выполнить перемножение модулей этих чисел и поставить перед полученным ответом знак «+ », если исходные числа были с одинаковыми знаками, и знак «− », если исходные числа были с разными знаками:

(-5) \cdot (+3) = -15

(-3) \cdot (-4) = +12

Следует запомнить следующее правило перемножения целых чисел :

+ \cdot + = +

+ \cdot - = -

- \cdot + = -

- \cdot - = +

Существует правило перемножения нескольких целых чисел. Запомним его:

Знак произведения будет «+ », если количество множителей с отрицательным знаком четное и «− », если количество множителей с отрицательным знаком нечетное.

(-5) \cdot (-4) \cdot (+1) \cdot (+6) \cdot (+1) = +120

Деление целых чисел

Деление двух целых чисел производится следующим образом: модуль одного числа делят на модуль другого и если знаки чисел одинаковые, то перед полученным частным ставят знак «+ », а если знаки исходных чисел разные, то ставится знак «− ».

(-25) : (+5) = -5

Свойства сложения и умножения целых чисел

Разберем основные свойства сложения и умножения для любых целых чисел a , b и c :

  1. a + b = b + a - переместительное свойство сложения;
  2. (a + b) + c = a + (b + c) - сочетательное свойство сложения;
  3. a \cdot b = b \cdot a - переместительное свойство умножения;
  4. (a \cdot c) \cdot b = a \cdot (b \cdot c) - сочетательное свойства умножения;
  5. a \cdot (b \cdot c) = a \cdot b + a \cdot c - распределительное свойство умножения.